MECÂNICA GRACELI GENERALIZADA - QUÂNTICA TENSORIAL DIMENSIONAL RELATIVISTA DE CAMPOS.


DE  ANCELMO LUIZ GRACELI  [BRASILEIRO].



FÍSICA GRACELI DIMENSIONAL. [dimensionismo indeterminado Graceli].




  MECÃNICA GRACELI GERAL - QTDRC.




equação Graceli dimensional relativista  tensorial quântica de campos 

G* =  =

[  /  IFF ]   * =   /  G   /     .  /

 G  = [DR] =            .+  

+  * =  = [          ] ω   / T] / c [    [x,t] ]  =  


//////

[  /  IFF ]  = INTERAÇÕES DE FORÇAS FUNDAMENTAIS. =

TeoriaInteraçãomediadorMagnitude relativaComportamentoFaixa
CromodinâmicaForça nuclear forteGlúon10411/r71,4 × 10-15 m
EletrodinâmicaForça eletromagnéticaFóton10391/r2infinito
FlavordinâmicaForça nuclear fracaBósons W e Z10291/r5 até 1/r710-18 m
GeometrodinâmicaForça gravitacionalgráviton101/r2infinito

G* =  OPERADOR DE DIMENSÕES DE GRACELI.

DIMENSÕES DE GRACELI SÃO TODA FORMA DE TENSORES, ESTRUTURAS, ENERGIAS, ACOPLAMENTOS, , INTERAÇÕES DE CAMPOS E ENERGIAS, DISTRIBUIÇÕES ELETRÔNICAS, ESTADOS FÍSICOS, ESTADOS QUÂNTICOS, ESTADOS FÍSICOS DE ENERGIAS DE GRACELI,  E OUTROS.

*= DIMENSÕES DE GRACELI = ESTADOS FÍSICOS, TIPOS E CARACTERITÍCAS, E POTENCIAIS FÍSICOS DAS ESTRUTURAS, DOS ELEMENTOS QUÍMICOS, ENERGIAS E NÍVEIS DE ENERGIAS, POTENCIAIS DE INTERAÇÕES , CONDUÇÕES, EMISSÕES, DESINTEGRAÇÕES, ABSORÇÕES, E OUTROS.

*= DIMENSÕES DE GRACELI = ESTADOS DE FASES E INTERMEDIÁRIOS DE TEMPERATURA, ELETROMAGNETISMO,  ENTROPIA, VIBRAÇÕES. E OUTROS.

LEVANDO E UM  SISTEMA DE FASES ÍNFIMAS, TEMOS UM SISTEMA DIMENSIONAL INDETERMINADO.

   *=  = [          ] ω           .

 MECÂNICA GRACELI GENERALIZADA - QUÂNTICA TENSORIAL DIMENSIONAL RELATIVISTA DE INTERAÇÕES DE CAMPOS. EM ;


MECÂNICA GRACELI REPRESENTADA POR TRANSFORMADA.



dd = dd [G] = DERIVADA DE DIMENSÕES DE GRACELI.

CONFORME  A TEORIA DE GRACELI DO AFASTAMENTO DOS PLANETAS E SATÉLITES, A TERRA DO AMANHÂ SERÁ O MARTE DE  HOJE, E QUE  FOI O VÊNUS DE HOJE, O MESMO SERVE PARA MARTE DE ONTEM. ISTO EXPLICA PORQUE SE TEM MARCAS DE RIOS EM MARTE.


ψ     [   ]    .


*  .

ψ   .


                                           - [  G*   /.    ] [  [

G { f [dd]}  ´[d] G*         / .  f [d]   G*                             dd [G]


O ESTADO QUÂNTICO DE GRACELI


                                           - [  G*   /.    ] [  []


G* = DIMENSÕES DE GRACELI TAMBÉM ESTÁ RELACIONADO COM INTERAÇÕES DE ENERGIAS, QUÂNTICAS, RELATIVÍSTICAS, , E INTERAÇÕES DE CAMPOS.


o tensor energia-momento  é aquele de um campo eletromagnético,


  = temperatura.




ψ     [ / ]   / [

] / [    ]     .


ψ        / [

] ]    .




   / []

] ]  .



 ψ   / [] /    .



ψ  /     / [ ]  [

] .   . 



ψ         []   .



 ψ        []]   .


ψ       / [ 

] ]    .






ψ   / [] /     .


*   ] /  [

] ]] .








    [

]] .


ψ   [

]/ ]  .










   ] / [

]  .




ψ         [ 

] ] / ]    .






ψ        [] /      





ψ [     [

 
]










ψ     [] /  ψ     .



       ] / ψ   .





Ondas harmônicas

Uma onda harmônica é uma onda com a forma de uma função senoidal, como na figura, no caso de uma onda que se desloca no sentido positivo do eixo dos .

A distância  entre dois pontos consecutivos onde o campo e a sua derivada têm o mesmo valor, é designada por comprimento de onda (por exemplo, a distância entre dois máximos ou mínimos consecutivos). O valor máximo do módulo do campo, , é a sua amplitude.

Onda Harmônica

O tempo que a onda demora a percorrer um comprimento de onda designa-se por {período}, .

O inverso do período é a frequência , que indica o número de comprimentos de onda que passam por um ponto, por unidade de tempo. No sistema SI a unidade da frequência é o hertz, representado pelo símbolo Hz, equivalente a .

No caso de uma onda eletromagnética no vácuo, a velocidade de propagação é  que deverá verificar a relação:

A equação da função representada na figura acima é:

onde a constante  é a fase inicial. Essa função representa a forma da onda num instante inicial, que podemos admitir .

Para obter a função de onda num instante diferente, teremos que substituir  por , já que a onda se propaga no sentido positivo do eixo dos , com velocidade .

usando a relação entre a velocidade e o período, podemos escrever:

Se substituirmos , obteremos a equação que descreve o campo elétrico na origem, em função do tempo:

assim, o campo na origem é uma função sinusoidal com período  e amplitude . O campo em outros pontos tem exatamente a mesma forma sinusoidal, mas com diferentes valores da fase

Comentários

Postagens mais visitadas deste blog